Summarization-based image resizing by intelligent object carving

Image resizing can be more effectively achieved with a better understanding of image semantics. In this paper, similar patterns that exist in many real-world images are analyzed. By interactively detecting similar objects in an image, the image content can be summarized rather than simply distorted...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 20(2014), 1 vom: 06. Jan., Seite 111-24
1. Verfasser: Dong, Weiming (VerfasserIn)
Weitere Verfasser: Zhou, Ning, Lee, Tong-Yee, Wu, Fuzhang, Kong, Yan, Zhang, Xiaopeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM232390983
003 DE-627
005 20231224092858.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2013.103  |2 doi 
028 5 2 |a pubmed24n0774.xml 
035 |a (DE-627)NLM232390983 
035 |a (NLM)24201330 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Weiming  |e verfasserin  |4 aut 
245 1 0 |a Summarization-based image resizing by intelligent object carving 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.06.2014 
500 |a Date Revised 08.11.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image resizing can be more effectively achieved with a better understanding of image semantics. In this paper, similar patterns that exist in many real-world images are analyzed. By interactively detecting similar objects in an image, the image content can be summarized rather than simply distorted or cropped. This method enables the manipulation of image pixels or patches as well as semantic objects in the scene during image resizing process. Given the special nature of similar objects in a general image, the integration of a novel object carving (OC) operator with the multi-operator framework is proposed for summarizing similar objects. The object removal sequence in the summarization strategy directly affects resizing quality. The method by which to evaluate the visual importance of the object as well as to optimally select the candidates for object carving is demonstrated. To achieve practical resizing applications for general images, a template matching-based method is developed. This method can detect similar objects even when they are of various colors, transformed in terms of perspective, or partially occluded. To validate the proposed method, comparisons with state-of-the-art resizing techniques and a user study were conducted. Convincing visual results are shown to demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhou, Ning  |e verfasserin  |4 aut 
700 1 |a Lee, Tong-Yee  |e verfasserin  |4 aut 
700 1 |a Wu, Fuzhang  |e verfasserin  |4 aut 
700 1 |a Kong, Yan  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 20(2014), 1 vom: 06. Jan., Seite 111-24  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:20  |g year:2014  |g number:1  |g day:06  |g month:01  |g pages:111-24 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2013.103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 1  |b 06  |c 01  |h 111-24