Integrated segmentation and interpolation of sparse data

We address the two inherently related problems of segmentation and interpolation of 3D and 4D sparse data and propose a new method to integrate these stages in a level set framework. The interpolation process uses segmentation information rather than pixel intensities for increased robustness and ac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 1 vom: 14. Jan., Seite 110-25
1. Verfasser: Paiement, Adeline (VerfasserIn)
Weitere Verfasser: Mirmehdi, Majid, Xie, Xianghua, Hamilton, Mark C K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM231995458
003 DE-627
005 20231224092023.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2286903  |2 doi 
028 5 2 |a pubmed24n0773.xml 
035 |a (DE-627)NLM231995458 
035 |a (NLM)24158475 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Paiement, Adeline  |e verfasserin  |4 aut 
245 1 0 |a Integrated segmentation and interpolation of sparse data 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2014 
500 |a Date Revised 12.11.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We address the two inherently related problems of segmentation and interpolation of 3D and 4D sparse data and propose a new method to integrate these stages in a level set framework. The interpolation process uses segmentation information rather than pixel intensities for increased robustness and accuracy. The method supports any spatial configurations of sets of 2D slices having arbitrary positions and orientations. We achieve this by introducing a new level set scheme based on the interpolation of the level set function by radial basis functions. The proposed method is validated quantitatively and/or subjectively on artificial data and MRI and CT scans and is compared against the traditional sequential approach, which interpolates the images first, using a state-of-the-art image interpolation method, and then segments the interpolated volume in 3D or 4D. In our experiments, the proposed framework yielded similar segmentation results to the sequential approach but provided a more robust and accurate interpolation. In particular, the interpolation was more satisfactory in cases of large gaps, due to the method taking into account the global shape of the object, and it recovered better topologies at the extremities of the shapes where the objects disappear from the image slices. As a result, the complete integrated framework provided more satisfactory shape reconstructions than the sequential approach 
650 4 |a Journal Article 
700 1 |a Mirmehdi, Majid  |e verfasserin  |4 aut 
700 1 |a Xie, Xianghua  |e verfasserin  |4 aut 
700 1 |a Hamilton, Mark C K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 1 vom: 14. Jan., Seite 110-25  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:1  |g day:14  |g month:01  |g pages:110-25 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2286903  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 1  |b 14  |c 01  |h 110-25