Width-modulated square-wave pulses for ultrasound applications
A method of output pressure control for ultrasound transducers using switched excitation is described. The method generates width-modulated square-wave pulse sequences that are suitable for driving ultrasound transducers using MOSFETs or similar devices. Sequences are encoded using an optimized leve...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 60(2013), 11 vom: 11. Nov., Seite 2244-56 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | A method of output pressure control for ultrasound transducers using switched excitation is described. The method generates width-modulated square-wave pulse sequences that are suitable for driving ultrasound transducers using MOSFETs or similar devices. Sequences are encoded using an optimized level-shifted, carrier-comparison, pulse-width modulation (PWM) strategy derived from existing PWM theory, and modified specifically for ultrasound applications. The modifications are: a reduction in carrier frequency so that the smallest number of pulses are generated and minimal switching is necessary; alteration of a linear carrier form to follow a trigonometric relationship in accordance with the expected fundamental output; and application of frequency modulation to the carrier when generating frequency-modulated, amplitude- tapered signals. The PWM method permits control of output pressure for arbitrary waveform sequences at diagnostic frequencies (approximately 5 MHz) when sampled at 100 MHz, and is applicable to pulse shaping and array apodization. Arbitrary waveform generation capability is demonstrated in simulation using convolution with a transducer's impulse response, and experimentally with hydrophone measurement. Benefits in coded imaging are demonstrated when compared with fixed-width square-wave (pseudo-chirp) excitation in coded imaging, including reduction in image artifacts and peak side-lobe levels for two cases, showing 10 and 8 dB reduction in peak side-lobe level experimentally, compared with 11 and 7 dB reduction in simulation. In all cases, the experimental observations correlate strongly with simulated data |
---|---|
Beschreibung: | Date Completed 02.06.2014 Date Revised 25.10.2013 published: Print Citation Status MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2013.6644730 |