Liposome-coated hydrogel spheres : delivery vehicles with tandem release from distinct compartments
We have fabricated unilamellar lipid bilayer VESicle-COated hydrogel spheres (VESCOgels) by carbodiimide-mediated coupling of liposomes bearing surface amines to core-shell hydrogel spheres bearing surface carboxyls. The amine-containing moiety, 3-O (2-aminoethoxyethyloxyethyl)carbamyl cholesterol (...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 47 vom: 26. Nov., Seite 14603-12 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Drug Carriers Liposomes Hydrogel, Polyethylene Glycol Dimethacrylate 25852-47-5 |
Zusammenfassung: | We have fabricated unilamellar lipid bilayer VESicle-COated hydrogel spheres (VESCOgels) by carbodiimide-mediated coupling of liposomes bearing surface amines to core-shell hydrogel spheres bearing surface carboxyls. The amine-containing moiety, 3-O (2-aminoethoxyethyloxyethyl)carbamyl cholesterol (AECHO), was incorporated into large unilamellar vesicles (LUVs), diameter ∼100 nm, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The hydrogel, diameter ∼ 1 μm, consisted of a core of poly(N-isopropyl acrylamide) (pNIPAM) and a shell of p(NIPAM-co-acrylic acid (AA)). Activation of these surface-displayed carboxyls with N-hydroxysuccinimidyl (NHS) esters permitted amine coupling upon addition of AECHO-containing POPC LUVs. Bilayer integrity of the hydrogel-bound LUVs was maintained, and fusion of LUVs did not occur. Fluorescence assays of the release of cobalt-calcein trapped within hydrogel-bound LUVs and of sodium fluorescein trapped within the hydrogel itself showed that each compartment retained its distinct release attributes: fast release from the microgel and slow release from the LUVs. It is envisioned that VESCOgels will be useful, therefore, in applications requiring temporally controlled delivery of distinct drugs |
---|---|
Beschreibung: | Date Completed 11.07.2014 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la402796k |