Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Po...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 64(2013), 18 vom: 14. Dez., Seite 5509-23
1. Verfasser: Sun, Zhihong (VerfasserIn)
Weitere Verfasser: Hüve, Katja, Vislap, Vivian, Niinemets, Ülo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't BVOCs foliage traits future emissions heat stress isoprene CO2 response temperature response. Butadienes Hemiterpenes mehr... Pentanes isoprene 0A62964IBU Carbon Dioxide 142M471B3J
Beschreibung
Zusammenfassung:Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future
Beschreibung:Date Completed 26.08.2014
Date Revised 23.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/ert318