|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM231936877 |
003 |
DE-627 |
005 |
20231224091908.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201302652
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0773.xml
|
035 |
|
|
|a (DE-627)NLM231936877
|
035 |
|
|
|a (NLM)24151199
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Głowacki, Eric Daniel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a 25th anniversary article
|b progress in chemistry and applications of functional indigos for organic electronics
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.07.2014
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a dyes and pigments
|
650 |
|
4 |
|a materials chemistry
|
650 |
|
4 |
|a natural products
|
650 |
|
4 |
|a organic electronics
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Coloring Agents
|2 NLM
|
650 |
|
7 |
|a Indoles
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Indigo Carmine
|2 NLM
|
650 |
|
7 |
|a D3741U8K7L
|2 NLM
|
700 |
1 |
|
|a Voss, Gundula
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sariciftci, Niyazi Serdar
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 25(2013), 47 vom: 17. Dez., Seite 6783-800
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2013
|g number:47
|g day:17
|g month:12
|g pages:6783-800
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201302652
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2013
|e 47
|b 17
|c 12
|h 6783-800
|