Parametric blur estimation for blind restoration of natural images : linear motion and out-of-focus

This paper presents a new method to estimate the parameters of two types of blurs, linear uniform motion (approximated by a line characterized by angle and length) and out-of-focus (modeled as a uniform disk characterized by its radius), for blind restoration of natural images. The method is based o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 1 vom: 02. Jan., Seite 466-77
1. Verfasser: Oliveira, João P (VerfasserIn)
Weitere Verfasser: Figueiredo, Mário A T, Bioucas-Dias, José M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This paper presents a new method to estimate the parameters of two types of blurs, linear uniform motion (approximated by a line characterized by angle and length) and out-of-focus (modeled as a uniform disk characterized by its radius), for blind restoration of natural images. The method is based on the spectrum of the blurred images and is supported on a weak assumption, which is valid for the most natural images: the power-spectrum is approximately isotropic and has a power-law decay with the spatial frequency. We introduce two modifications to the radon transform, which allow the identification of the blur spectrum pattern of the two types of blurs above mentioned. The blur parameters are identified by fitting an appropriate function that accounts separately for the natural image spectrum and the blur frequency response. The accuracy of the proposed method is validated by simulations, and the effectiveness of the proposed method is assessed by testing the algorithm on real natural blurred images and comparing it with state-of-the-art blind deconvolution methods
Beschreibung:Date Completed 23.09.2014
Date Revised 31.01.2014
published: Print
Citation Status MEDLINE
ISSN:1941-0042