Symbol : see text]2 Optimized predictive image coding with [Symbol: see text]∞ bound

In many scientific, medical, and defense applications of image/video compression, an [Symbol: see text]∞ error bound is required. However, pure[Symbol: see text]∞-optimized image coding, colloquially known as near-lossless image coding, is prone to structured errors such as contours and speckles if...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 12 vom: 02. Dez., Seite 5271-81
1. Verfasser: Chuah, Sceuchin (VerfasserIn)
Weitere Verfasser: Dumitrescu, Sorina, Wu, Xiaolin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM231874812
003 DE-627
005 20231224091743.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0773.xml 
035 |a (DE-627)NLM231874812 
035 |a (NLM)24144660 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chuah, Sceuchin  |e verfasserin  |4 aut 
245 1 0 |a Symbol  |b see text]2 Optimized predictive image coding with [Symbol: see text]∞ bound 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2014 
500 |a Date Revised 13.11.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In many scientific, medical, and defense applications of image/video compression, an [Symbol: see text]∞ error bound is required. However, pure[Symbol: see text]∞-optimized image coding, colloquially known as near-lossless image coding, is prone to structured errors such as contours and speckles if the bit rate is not sufficiently high; moreover, most of the previous [Symbol: see text]∞-based image coding methods suffer from poor rate control. In contrast, the [Symbol: see text]2 error metric aims for average fidelity and hence preserves the subtlety of smooth waveforms better than the ∞ error metric and it offers fine granularity in rate control, but pure [Symbol: see text]2-based image coding methods (e.g., JPEG 2000) cannot bound individual errors as the [Symbol: see text]∞-based methods can. This paper presents a new compression approach to retain the benefits and circumvent the pitfalls of the two error metrics. A common approach of near-lossless image coding is to embed into a DPCM prediction loop a uniform scalar quantizer of residual errors. The said uniform scalar quantizer is replaced, in the proposed new approach, by a set of context-based [Symbol: see text]2-optimized quantizers. The optimization criterion is to minimize a weighted sum of the [Symbol: see text]2 distortion and the entropy while maintaining a strict [Symbol: see text]∞ error bound. The resulting method obtains good rate-distortion performance in both [Symbol: see text]2 and [Symbol: see text]∞ metrics and also increases the rate granularity. Compared with JPEG 2000, the new method not only guarantees lower [Symbol: see text]∞ error for all bit rates, but also it achieves higher PSNR for relatively high bit rates 
650 4 |a Journal Article 
700 1 |a Dumitrescu, Sorina  |e verfasserin  |4 aut 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 12 vom: 02. Dez., Seite 5271-81  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:12  |g day:02  |g month:12  |g pages:5271-81 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 12  |b 02  |c 12  |h 5271-81