Contextualized trajectory parsing with spatiotemporal graph

This work investigates how to automatically parse object trajectories in surveillance videos, which aims at jointly solving three subproblems: 1) spatial segmentation, 2) temporal tracking, and 3) object categorization. We present a novel representation spatiotemporal graph (ST-Graph) in which: 1) G...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 12 vom: 17. Dez., Seite 3010-24
1. Verfasser: Liu, Xiaobai (VerfasserIn)
Weitere Verfasser: Lin, Liang, Jin, Hai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM231799764
003 DE-627
005 20231224091600.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.84  |2 doi 
028 5 2 |a pubmed24n0772.xml 
035 |a (DE-627)NLM231799764 
035 |a (NLM)24136437 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
245 1 0 |a Contextualized trajectory parsing with spatiotemporal graph 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2016 
500 |a Date Revised 18.10.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work investigates how to automatically parse object trajectories in surveillance videos, which aims at jointly solving three subproblems: 1) spatial segmentation, 2) temporal tracking, and 3) object categorization. We present a novel representation spatiotemporal graph (ST-Graph) in which: 1) Graph nodes express the motion primitives, each representing a short sequence of small-size patches over consecutive images, and 2) every two neighbor nodes are linked with either a positive edge or a negative edge to describe their collaborative or exclusive relationship of belonging to the same object trajectory. Phrasing the trajectory parsing as a graph multicoloring problem, we propose a unified probabilistic formulation to integrate various types of context knowledge as informative priors. An efficient composite cluster sampling algorithm is employed in search of the optimal solution by exploiting both the collaborative and the exclusive relationships between nodes. The proposed framework is evaluated over challenging videos from public datasets, and results show that it can achieve state-of-the-art tracking accuracy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Lin, Liang  |e verfasserin  |4 aut 
700 1 |a Jin, Hai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 12 vom: 17. Dez., Seite 3010-24  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:12  |g day:17  |g month:12  |g pages:3010-24 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.84  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 12  |b 17  |c 12  |h 3010-24