Iterative quantization : a Procrustean approach to learning binary codes for large-scale image retrieval

This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 12 vom: 17. Dez., Seite 2916-29
1. Verfasser: Gong, Yunchao (VerfasserIn)
Weitere Verfasser: Lazebnik, Svetlana, Gordo, Albert, Perronnin, Florent
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.