Efficient human pose estimation from single depth images

We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 12 vom: 17. Dez., Seite 2821-40
1. Verfasser: Shotton, Jamie (VerfasserIn)
Weitere Verfasser: Girshick, Ross, Fitzgibbon, Andrew, Sharp, Toby, Cook, Mat, Finocchio, Mark, Moore, Richard, Kohli, Pushmeet, Criminisi, Antonio, Kipman, Alex, Blake, Andrew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM231799640
003 DE-627
005 20250216023744.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.241  |2 doi 
028 5 2 |a pubmed25n0772.xml 
035 |a (DE-627)NLM231799640 
035 |a (NLM)24136424 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shotton, Jamie  |e verfasserin  |4 aut 
245 1 0 |a Efficient human pose estimation from single depth images 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.04.2016 
500 |a Date Revised 02.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training images. This allows us to learn models that are largely invariant to factors such as pose, body shape, field-of-view cropping, and clothing. Our first approach employs an intermediate body parts representation, designed so that an accurate per-pixel classification of the parts will localize the joints of the body. The second approach instead directly regresses the positions of body joints. By using simple depth pixel comparison features and parallelizable decision forests, both approaches can run super-real time on consumer hardware. Our evaluation investigates many aspects of our methods, and compares the approaches to each other and to the state of the art. Results on silhouettes suggest broader applicability to other imaging modalities 
650 4 |a Journal Article 
700 1 |a Girshick, Ross  |e verfasserin  |4 aut 
700 1 |a Fitzgibbon, Andrew  |e verfasserin  |4 aut 
700 1 |a Sharp, Toby  |e verfasserin  |4 aut 
700 1 |a Cook, Mat  |e verfasserin  |4 aut 
700 1 |a Finocchio, Mark  |e verfasserin  |4 aut 
700 1 |a Moore, Richard  |e verfasserin  |4 aut 
700 1 |a Kohli, Pushmeet  |e verfasserin  |4 aut 
700 1 |a Criminisi, Antonio  |e verfasserin  |4 aut 
700 1 |a Kipman, Alex  |e verfasserin  |4 aut 
700 1 |a Blake, Andrew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 12 vom: 17. Dez., Seite 2821-40  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:12  |g day:17  |g month:12  |g pages:2821-40 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.241  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 12  |b 17  |c 12  |h 2821-40