Dynamic waste management (DWM) : towards an evolutionary decision-making approach

To guarantee sustainable and dynamic waste management, the dynamic waste management approach (DWM) suggests an evolutionary new approach that maintains a constant flow towards the most favourable waste treatment processes (facilities) within a system. To that end, DWM is based on the law of conserva...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 31(2013), 12 vom: 03. Dez., Seite 1285-92
1. Verfasser: Rojo, Gabriel (VerfasserIn)
Weitere Verfasser: Glaus, Mathias, Laforest, Valerie, Laforest, Valérie, Bourgois, Jacques, Bourgeois, Jacques, Hausler, Robert
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Waste management decision-making tool integrated management law of conservation of energy model simulation systemic approach Industrial Waste
Beschreibung
Zusammenfassung:To guarantee sustainable and dynamic waste management, the dynamic waste management approach (DWM) suggests an evolutionary new approach that maintains a constant flow towards the most favourable waste treatment processes (facilities) within a system. To that end, DWM is based on the law of conservation of energy, which allows the balancing of a network, while considering the constraints of incoming (h1 ) and outgoing (h2 ) loads, as well as the distribution network (ΔH) characteristics. The developed approach lies on the identification of the prioritization index (PI) for waste generators (analogy to h1 ), a global allocation index for each of the treatment processes (analogy to h2 ) and the linear index load loss (ΔH) associated with waste transport. To demonstrate the scope of DWM, we outline this approach, and then present an example of its application. The case study shows that the variable monthly waste from the three considered sources is dynamically distributed in priority to the more favourable processes. Moreover, the reserve (stock) helps temporarily store waste in order to ease the global load of the network and favour a constant feeding of the treatment processes. The DWM approach serves as a decision-making tool by evaluating new waste treatment processes, as well as their location and new means of transport for waste
Beschreibung:Date Completed 31.07.2014
Date Revised 21.09.2015
published: Print-Electronic
ErratumIn: Waste Manag Res. 2014 Mar;32(3):249 Laforest, Valérie [corrected to Laforest, Valerie]; Bourgeois, Jacques [corrected to Bourgois, Jacques]
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X13507306