|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM231602405 |
003 |
DE-627 |
005 |
20231224091124.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.12413
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0772.xml
|
035 |
|
|
|a (DE-627)NLM231602405
|
035 |
|
|
|a (NLM)24115565
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pittelkow, Cameron M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Optimizing rice yields while minimizing yield-scaled global warming potential
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.12.2014
|
500 |
|
|
|a Date Revised 19.11.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2013 John Wiley & Sons Ltd.
|
520 |
|
|
|a To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a CH4
|
650 |
|
4 |
|a GHG emissions
|
650 |
|
4 |
|a N2O
|
650 |
|
4 |
|a greenhouse gas intensity
|
650 |
|
4 |
|a rice yield
|
650 |
|
4 |
|a synthetic N fertilizer
|
650 |
|
7 |
|a Air Pollutants
|2 NLM
|
650 |
|
7 |
|a Fertilizers
|2 NLM
|
650 |
|
7 |
|a Gases
|2 NLM
|
650 |
|
7 |
|a Nitrous Oxide
|2 NLM
|
650 |
|
7 |
|a K50XQU1029
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
650 |
|
7 |
|a Methane
|2 NLM
|
650 |
|
7 |
|a OP0UW79H66
|2 NLM
|
700 |
1 |
|
|a Adviento-Borbe, Maria A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van Kessel, Chris
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hill, James E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Linquist, Bruce A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 20(2014), 5 vom: 11. Mai, Seite 1382-93
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2014
|g number:5
|g day:11
|g month:05
|g pages:1382-93
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.12413
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2014
|e 5
|b 11
|c 05
|h 1382-93
|