Image set based face recognition using self-regularized non-negative coding and adaptive distance metric learning

Simple nearest neighbor classification fails to exploit the additional information in image sets. We propose self-regularized nonnegative coding to define between set distance for robust face recognition. Set distance is measured between the nearest set points (samples) that can be approximated from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 12 vom: 21. Dez., Seite 5252-62
1. Verfasser: Mian, Ajmal (VerfasserIn)
Weitere Verfasser: Hu, Yiqun, Hartley, Richard, Owens, Robyn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM231531834
003 DE-627
005 20231224090943.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0771.xml 
035 |a (DE-627)NLM231531834 
035 |a (NLM)24107936 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mian, Ajmal  |e verfasserin  |4 aut 
245 1 0 |a Image set based face recognition using self-regularized non-negative coding and adaptive distance metric learning 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2014 
500 |a Date Revised 13.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Simple nearest neighbor classification fails to exploit the additional information in image sets. We propose self-regularized nonnegative coding to define between set distance for robust face recognition. Set distance is measured between the nearest set points (samples) that can be approximated from their orthogonal basis vectors as well as from the set samples under the respective constraints of self-regularization and nonnegativity. Self-regularization constrains the orthogonal basis vectors to be similar to the approximated nearest point. The nonnegativity constraint ensures that each nearest point is approximated from a positive linear combination of the set samples. Both constraints are formulated as a single convex optimization problem and the accelerated proximal gradient method with linear-time Euclidean projection is adapted to efficiently find the optimal nearest points between two image sets. Using the nearest points between a query set and all the gallery sets as well as the active samples used to approximate them, we learn a more discriminative Mahalanobis distance for robust face recognition. The proposed algorithm works independently of the chosen features and has been tested on gray pixel values and local binary patterns. Experiments on three standard data sets show that the proposed method consistently outperforms existing state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hu, Yiqun  |e verfasserin  |4 aut 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
700 1 |a Owens, Robyn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 12 vom: 21. Dez., Seite 5252-62  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:12  |g day:21  |g month:12  |g pages:5252-62 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 12  |b 21  |c 12  |h 5252-62