Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon

© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 200(2013), 3 vom: 18. Nov., Seite 691-699
1. Verfasser: Liu, Jian (VerfasserIn)
Weitere Verfasser: Ma, Jie, He, Congwu, Li, Xiuli, Zhang, Wenjun, Xu, Fangsen, Lin, Yongjun, Wang, Lijun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Si-wall-Cd complexation cadmium (Cd) cell wall organosilicon rice (Oryza sativa) silicon (Si) Ions Cadmium mehr... 00BH33GNGH Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
The stresses acting on plants that are alleviated by silicon (Si) range from biotic to abiotic stresses, such as heavy metal toxicity. However, the mechanism of stress alleviation by Si at the single-cell level is poorly understood. We cultivated suspended rice (Oryza sativa) cells and protoplasts and investigated them using a combination of plant nutritional and physical techniques including inductively coupled plasma mass spectrometry (ICP-MS), the scanning ion-selective electrode technique (SIET) and X-ray photoelectron spectroscopy (XPS). We found that most Si accumulated in the cell walls in a wall-bound organosilicon compound. Total cadmium (Cd) concentrations in protoplasts from Si-accumulating (+Si) cells were significantly reduced at moderate concentrations of Cd in the culture medium compared with those from Si-limiting (-Si) cells. In situ measurement of cellular fluxes of the cadmium ion (Cd(2+) ) in suspension cells and root cells of rice exposed to Cd(2+) and/or Si treatments showed that +Si cells significantly inhibited the net Cd(2+) influx, compared with that in -Si cells. Furthermore, a net negative charge (charge density) within the +Si cell walls could be neutralized by an increase in the Cd(2+) concentration in the measuring solution. A mechanism of co-deposition of Si and Cd in the cell walls via a [Si-wall matrix]Cd co-complexation may explain the inhibition of Cd ion uptake, and may offer a plausible explanation for the in vivo detoxification of Cd in rice
Beschreibung:Date Completed 29.04.2014
Date Revised 10.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12494