Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

Copyright © 2013 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 73(2013) vom: 01. Dez., Seite 83-92
1. Verfasser: O'Donnell, Natalie H (VerfasserIn)
Weitere Verfasser: Møller, Birger Lindberg, Neale, Alan D, Hamill, John D, Blomstedt, Cecilia K, Gleadow, Roslyn M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cyanide potential (HCNp) Cyanogenesis Drought HCN Herbivory LAR MeJa NAR mehr... Nitrate PEG Plant defence RGR RWC SA SLA Secondary metabolism hydrogen cyanide leaf area ratio methyl jasmonate net assimilation rate polyethylene glycol relative growth rate relative water content salicylic acid specific leaf area Glycosides Nitrates Nitriles Soil Water 059QF0KO0R Polyethylene Glycols 3WJQ0SDW1A dhurrin P5999IY65C
LEADER 01000naa a22002652 4500
001 NLM231287836
003 DE-627
005 20231224090401.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2013.09.001  |2 doi 
028 5 2 |a pubmed24n0771.xml 
035 |a (DE-627)NLM231287836 
035 |a (NLM)24080394 
035 |a (PII)S0981-9428(13)00307-0 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a O'Donnell, Natalie H  |e verfasserin  |4 aut 
245 1 0 |a Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.07.2014 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier Masson SAS. All rights reserved. 
520 |a Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentrations of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism. Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20% PEG (-0.5 MPa) for an extended period had significantly higher concentrations of dhurrin in their shoots but lower dhurrin concentrations in their roots. The total amount of dhurrin in the shoots of plants from the various treatments was not significantly different on a per mass basis, although a greater proportion of shoot N was allocated to dhurrin. Following transfer from medium containing 20% PEG to medium lacking PEG, shoot dhurrin concentrations decreased but nitrate concentrations increased to levels potentially toxic to grazing ruminants. This response is likely due to the resumption of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Cyanide potential (HCNp) 
650 4 |a Cyanogenesis 
650 4 |a Drought 
650 4 |a HCN 
650 4 |a Herbivory 
650 4 |a LAR 
650 4 |a MeJa 
650 4 |a NAR 
650 4 |a Nitrate 
650 4 |a PEG 
650 4 |a Plant defence 
650 4 |a RGR 
650 4 |a RWC 
650 4 |a SA 
650 4 |a SLA 
650 4 |a Secondary metabolism 
650 4 |a hydrogen cyanide 
650 4 |a leaf area ratio 
650 4 |a methyl jasmonate 
650 4 |a net assimilation rate 
650 4 |a polyethylene glycol 
650 4 |a relative growth rate 
650 4 |a relative water content 
650 4 |a salicylic acid 
650 4 |a specific leaf area 
650 7 |a Glycosides  |2 NLM 
650 7 |a Nitrates  |2 NLM 
650 7 |a Nitriles  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Polyethylene Glycols  |2 NLM 
650 7 |a 3WJQ0SDW1A  |2 NLM 
650 7 |a dhurrin  |2 NLM 
650 7 |a P5999IY65C  |2 NLM 
700 1 |a Møller, Birger Lindberg  |e verfasserin  |4 aut 
700 1 |a Neale, Alan D  |e verfasserin  |4 aut 
700 1 |a Hamill, John D  |e verfasserin  |4 aut 
700 1 |a Blomstedt, Cecilia K  |e verfasserin  |4 aut 
700 1 |a Gleadow, Roslyn M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 73(2013) vom: 01. Dez., Seite 83-92  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:73  |g year:2013  |g day:01  |g month:12  |g pages:83-92 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2013.09.001  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 73  |j 2013  |b 01  |c 12  |h 83-92