Photochemically prepared, two-component polymer-concentration gradients

A versatile, photochemical surface-modification approach using nitrene-insertion reactions has been employed to develop an ultrathin, two-component, polymer-gradient coating. Perfluorophenyl azide (PFPA) acted as the photosensitive moiety, forming a nitrene radical upon 254 nm UV exposure. Cationic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 42 vom: 22. Okt., Seite 13031-41
1. Verfasser: Sterner, Olof (VerfasserIn)
Weitere Verfasser: Serrano, Ângela, Mieszkin, Sophie, Zürcher, Stefan, Tosatti, Samuele, Callow, Maureen E, Callow, James A, Spencer, Nicholas D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Azides Hydrocarbons, Fluorinated Polyamines Polystyrenes perfluorophenyl azide polyallylamine 30551-89-4 Povidone mehr... FZ989GH94E Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:A versatile, photochemical surface-modification approach using nitrene-insertion reactions has been employed to develop an ultrathin, two-component, polymer-gradient coating. Perfluorophenyl azide (PFPA) acted as the photosensitive moiety, forming a nitrene radical upon 254 nm UV exposure. Cationic poly(allyl amine) was grafted with PFPA and surface-anchored onto silicon wafers by means of electrostatic self-assembly. After spin-coating of polystyrene (PS), the substrate was illuminated from behind a moving shutter, thereby controlling the azide-to-nitrene conversion degree across the substrate, and leading to a gradually varying PS density after rinsing. Backfilling with poly(vinyl pyrrolidone) (PVP) and re-exposing to UV light formed a two-component polymer-density gradient. The composition varied linearly following exposure to a linear UV exposure profile, as determined with spectroscopic ellipsometry (ELM) and X-ray photoelectron spectroscopy (XPS). High-spatial-resolution, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed a high degree of mixing between the two incompatible polymers on the micrometer scale. The dynamic water-contact angle (dCA) was found to depend strongly on the sample history, suggesting adaptive properties of the coating, which was further confirmed by angle-resolved XPS (ARXPS). To confirm the applicability of the system for biological investigations, gradients were exposed to zoospores of the macrofouling alga Ulva linza , and a critical PS composition of 70% was identified, above which settlement started to increase. It has been shown that a two-component polymer-density gradient can provide a high-throughput platform for determining critical surface properties of polymer blend materials
Beschreibung:Date Completed 06.06.2014
Date Revised 16.11.2017
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la402168z