An information-aware framework for exploring multivariate data sets

Information theory provides a theoretical framework for measuring information content for an observed variable, and has attracted much attention from visualization researchers for its ability to quantify saliency and similarity among variables. In this paper, we present a new approach towards buildi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 19(2013), 12 vom: 13. Dez., Seite 2683-92
1. Verfasser: Biswas, Ayan (VerfasserIn)
Weitere Verfasser: Dutta, Soumya, Shen, Han-Wei, Woodring, Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM231020880
003 DE-627
005 20231224085748.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2013.133  |2 doi 
028 5 2 |a pubmed24n0770.xml 
035 |a (DE-627)NLM231020880 
035 |a (NLM)24051835 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Biswas, Ayan  |e verfasserin  |4 aut 
245 1 3 |a An information-aware framework for exploring multivariate data sets 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.05.2014 
500 |a Date Revised 20.09.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Information theory provides a theoretical framework for measuring information content for an observed variable, and has attracted much attention from visualization researchers for its ability to quantify saliency and similarity among variables. In this paper, we present a new approach towards building an exploration framework based on information theory to guide the users through the multivariate data exploration process. In our framework, we compute the total entropy of the multivariate data set and identify the contribution of individual variables to the total entropy. The variables are classified into groups based on a novel graph model where a node represents a variable and the links encode the mutual information shared between the variables. The variables inside the groups are analyzed for their representativeness and an information based importance is assigned. We exploit specific information metrics to analyze the relationship between the variables and use the metrics to choose isocontours of selected variables. For a chosen group of points, parallel coordinates plots (PCP) are used to show the states of the variables and provide an interface for the user to select values of interest. Experiments with different data sets reveal the effectiveness of our proposed framework in depicting the interesting regions of the data sets taking into account the interaction among the variables 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Dutta, Soumya  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
700 1 |a Woodring, Jonathan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 19(2013), 12 vom: 13. Dez., Seite 2683-92  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:19  |g year:2013  |g number:12  |g day:13  |g month:12  |g pages:2683-92 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2013.133  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2013  |e 12  |b 13  |c 12  |h 2683-92