Temporal localization of actions with actoms

We address the problem of localizing actions, such as opening a door, in hours of challenging video data. We propose a model based on a sequence of atomic action units, termed "actoms," that are semantically meaningful and characteristic for the action. Our actom sequence model (ASM) repre...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 11 vom: 28. Nov., Seite 2782-95
Auteur principal: Gaidon, Adrien (Auteur)
Autres auteurs: Harchaoui, Zaid, Schmid, Cordelia
Format: Article en ligne
Langue:English
Publié: 2013
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM231019912
003 DE-627
005 20250215225350.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.65  |2 doi 
028 5 2 |a pubmed25n0770.xml 
035 |a (DE-627)NLM231019912 
035 |a (NLM)24051735 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gaidon, Adrien  |e verfasserin  |4 aut 
245 1 0 |a Temporal localization of actions with actoms 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2014 
500 |a Date Revised 20.09.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We address the problem of localizing actions, such as opening a door, in hours of challenging video data. We propose a model based on a sequence of atomic action units, termed "actoms," that are semantically meaningful and characteristic for the action. Our actom sequence model (ASM) represents an action as a sequence of histograms of actom-anchored visual features, which can be seen as a temporally structured extension of the bag-of-features. Training requires the annotation of actoms for action examples. At test time, actoms are localized automatically based on a nonparametric model of the distribution of actoms, which also acts as a prior on an action's temporal structure. We present experimental results on two recent benchmarks for action localization "Coffee and Cigarettes" and the "DLSBP" dataset. We also adapt our approach to a classification-by-localization set-up and demonstrate its applicability on the challenging "Hollywood 2" dataset. We show that our ASM method outperforms the current state of the art in temporal action localization, as well as baselines that localize actions with a sliding window method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Harchaoui, Zaid  |e verfasserin  |4 aut 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 11 vom: 28. Nov., Seite 2782-95  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:35  |g year:2013  |g number:11  |g day:28  |g month:11  |g pages:2782-95 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.65  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 11  |b 28  |c 11  |h 2782-95