Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data

We present a new statistical pattern recognition approach for the problem of left ventricle endocardium tracking in ultrasound data. The problem is formulated as a sequential importance resampling algorithm such that the expected segmentation of the current time step is estimated based on the appear...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 11 vom: 28. Nov., Seite 2592-607
1. Verfasser: Carneiro, Gustavo (VerfasserIn)
Weitere Verfasser: Nascimento, Jacinto C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM231019785
003 DE-627
005 20231224085746.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.96  |2 doi 
028 5 2 |a pubmed24n0770.xml 
035 |a (DE-627)NLM231019785 
035 |a (NLM)24051722 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Carneiro, Gustavo  |e verfasserin  |4 aut 
245 1 0 |a Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2014 
500 |a Date Revised 25.11.2016 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a new statistical pattern recognition approach for the problem of left ventricle endocardium tracking in ultrasound data. The problem is formulated as a sequential importance resampling algorithm such that the expected segmentation of the current time step is estimated based on the appearance, shape, and motion models that take into account all previous and current images and previous segmentation contours produced by the method. The new appearance and shape models decouple the affine and nonrigid segmentations of the left ventricle to reduce the running time complexity. The proposed motion model combines the systole and diastole motion patterns and an observation distribution built by a deep neural network. The functionality of our approach is evaluated using a dataset of diseased cases containing 16 sequences and another dataset of normal cases comprised of four sequences, where both sets present long axis views of the left ventricle. Using a training set comprised of diseased and healthy cases, we show that our approach produces more accurate results than current state-of-the-art endocardium tracking methods in two test sequences from healthy subjects. Using three test sequences containing different types of cardiopathies, we show that our method correlates well with interuser statistics produced by four cardiologists 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Nascimento, Jacinto C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 11 vom: 28. Nov., Seite 2592-607  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:11  |g day:28  |g month:11  |g pages:2592-607 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.96  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 11  |b 28  |c 11  |h 2592-607