Behavioral Signal Processing : Deriving Human Behavioral Informatics From Speech and Language: Computational techniques are presented to analyze and model expressed and perceived human behavior-variedly characterized as typical, atypical, distressed, and disordered-from speech and language cues and their applications in health, commerce, education, and beyond

The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. - 1998. - 101(2013), 5 vom: 07. Feb., Seite 1203-1233
1. Verfasser: Narayanan, Shrikanth (VerfasserIn)
Weitere Verfasser: Georgiou, Panayiotis G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Proceedings of the IEEE. Institute of Electrical and Electronics Engineers
Schlagworte:Journal Article Affective computing behavior computational psychology computational social sciences emotions health applications multimodal signal processing natural language processing speech understanding
LEADER 01000caa a22002652 4500
001 NLM230900755
003 DE-627
005 20250215222628.0
007 tu
008 231224s2013 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0769.xml 
035 |a (DE-627)NLM230900755 
035 |a (NLM)24039277 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Narayanan, Shrikanth  |e verfasserin  |4 aut 
245 1 0 |a Behavioral Signal Processing  |b Deriving Human Behavioral Informatics From Speech and Language: Computational techniques are presented to analyze and model expressed and perceived human behavior-variedly characterized as typical, atypical, distressed, and disordered-from speech and language cues and their applications in health, commerce, education, and beyond 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 06.11.2023 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion 
650 4 |a Journal Article 
650 4 |a Affective computing 
650 4 |a behavior 
650 4 |a computational psychology 
650 4 |a computational social sciences 
650 4 |a emotions 
650 4 |a health applications 
650 4 |a multimodal signal processing 
650 4 |a natural language processing 
650 4 |a speech understanding 
700 1 |a Georgiou, Panayiotis G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the IEEE. Institute of Electrical and Electronics Engineers  |d 1998  |g 101(2013), 5 vom: 07. Feb., Seite 1203-1233  |w (DE-627)NLM098145274  |x 0018-9219  |7 nnns 
773 1 8 |g volume:101  |g year:2013  |g number:5  |g day:07  |g month:02  |g pages:1203-1233 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 101  |j 2013  |e 5  |b 07  |c 02  |h 1203-1233