Inertia in an ombrotrophic bog ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated by form

© 2013 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 20(2014), 2 vom: 04. Feb., Seite 566-80
1. Verfasser: Sheppard, Lucy J (VerfasserIn)
Weitere Verfasser: Leith, Ian D, Mizunuma, Toshie, Leeson, Sarah, Kivimaki, Sanna, Neil Cape, J, van Dijk, Netty, Leaver, David, Sutton, Mark A, Fowler, David, Van den Berg, Leon J L, Crossley, Alan, Field, Chris, Smart, Simon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Calluna Sphagnum capillifolium ammonium chronology cover critical loads growth nitrate mehr... peatland Air Pollutants Soil Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2013 John Wiley & Sons Ltd.
Wet deposition of nitrogen (N) occurs in oxidized (nitrate) and reduced (ammonium) forms. Whether one form drives vegetation change more than the other is widely debated, as field evidence has been lacking. We are manipulating N form in wet deposition to an ombrotrophic bog, Whim (Scottish Borders), and here report nine years of results. Ammonium and nitrate were provided in rainwater spray as NH4 Cl or NaNO3 at 8, 24 or 56 kg N ha(-1)  yr(-1) , plus a rainwater only control, via an automated system coupled to site meteorology. Detrimental N effects were observed in sensitive nonvascular plant species, with higher cumulative N loads leading to more damage at lower annual doses. Cover responses to N addition, both in relation to form and dose, were species specific and mostly dependent on N dose. Some species were generally indifferent to N form and dose, while others were dose sensitive. Calluna vulgaris showed a preference for higher N doses as ammonium N and Hypnum jutlandicum for nitrate N. However, after 9 years, the magnitude of change from wet deposited N on overall species cover is small, indicating only a slow decline in key species. Nitrogen treatment effects on soil N availability were likewise small and rarely correlated with species cover. Ammonium caused most N accumulation and damage to sensitive species at lower N loads, but toxic effects also occurred with nitrate. However, because different species respond differently to N form, setting of ecosystem level critical loads by N form is challenging. We recommend implementing the lowest value of the critical load range where communities include sensitive nonvascular plants and where ammonium dominates wet deposition chemistry. In the context of parallel assessment at the same site, N treatments for wet deposition showed overall much smaller effects than corresponding inputs of dry deposition as ammonia
Beschreibung:Date Completed 10.09.2014
Date Revised 16.11.2017
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.12357