Assessing leaf photoprotective mechanisms using terrestrial LiDAR : towards mapping canopy photosynthetic performance in three dimensions

© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 201(2014), 1 vom: 31. Jan., Seite 344-356
1. Verfasser: Magney, Troy S (VerfasserIn)
Weitere Verfasser: Eusden, Spencer A, Eitel, Jan U H, Logan, Barry A, Jiang, Jingjue, Vierling, Lee A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. green laser return intensity (GLRI) leaf pigments light detection and ranging (LiDAR) non-photochemical quenching (NPQ) photochemical reflectance index (PRI) remote sensing terrestrial laser scanning (TLS) mehr... xanthophyll cycle Photosynthetic Reaction Center Complex Proteins Xanthophylls Chlorophyll 1406-65-1
Beschreibung
Zusammenfassung:© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Terrestrial laser scanning (TLS) data allow spatially explicit (x, y, z) laser return intensities to be recorded throughout a plant canopy, which could considerably improve our understanding of how physiological processes vary in three-dimensional space. However, the utility of TLS data for the quantification of plant physiological properties remains largely unexplored. Here, we test whether the laser return intensity of green (532-nm) TLS correlates with changes in the de-epoxidation state of the xanthophyll cycle and photoprotective non-photochemical quenching (NPQ), and compare the ability of TLS to quantify these parameters with the passively measured photochemical reflectance index (PRI). We exposed leaves from five plant species to increasing light intensities to induce NPQ and de-epoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). At each light intensity, the green laser return intensity (GLRI), narrowband spectral reflectance, chlorophyll fluorescence emission and xanthophyll cycle pigment composition were recorded. Strong relationships between both predictor variables (GLRI, PRI) and both explanatory variables (NPQ, xanthophyll cycle de-epoxidation) were observed. GLRI holds promise to provide detailed (mm) information about plant physiological status to improve our understanding of the patterns and mechanisms driving foliar photoprotection. We discuss the potential for scaling these laboratory data to three-dimensional canopy space
Beschreibung:Date Completed 07.07.2014
Date Revised 23.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12453