Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants

Copyright © 2013 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 73(2013) vom: 09. Dez., Seite 7-15
1. Verfasser: Cvikrová, Milena (VerfasserIn)
Weitere Verfasser: Gemperlová, Lenka, Martincová, Olga, Vanková, Radomira
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't ADC DAO DM Drought FM Heat stress MDA N-Spd mehr... N-Spm ODC PAO PAs Polyamines Proline Put ROS RWC S-adenosylmethionine decarboxylase SAMDC SM Spd Spm Tobacco plants arginine decarboxylase diamine oxidase dry mass fresh mass malondialdehyde norspermidine norspermine ornithine decarboxylase polyamine oxidase polyamines putrescine reactive oxygen species relative water content spermidine spermine water-saturated mass Arabidopsis Proteins Multienzyme Complexes Plant Proteins Pyrroles delta(1)-pyrroline-5-carboxylate synthetase, Arabidopsis Water 059QF0KO0R delta-1-pyrroline-5-carboxylate 2906-39-0 Spermine 2FZ7Y3VOQX Malondialdehyde 4Y8F71G49Q 9DLQ4CIU6V Glutamate-5-Semialdehyde Dehydrogenase EC 1.2.1.41 Oxidoreductases Acting on CH-NH Group Donors EC 1.5.- Phosphotransferases (Alcohol Group Acceptor) EC 2.7.1.- Spermidine U87FK77H25 Putrescine V10TVZ52E4
LEADER 01000caa a22002652 4500
001 NLM230802230
003 DE-627
005 20231227124822.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2013.08.005  |2 doi 
028 5 2 |a pubmed24n1223.xml 
035 |a (DE-627)NLM230802230 
035 |a (NLM)24029075 
035 |a (PII)S0981-9428(13)00299-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cvikrová, Milena  |e verfasserin  |4 aut 
245 1 0 |a Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.07.2014 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier Masson SAS. All rights reserved. 
520 |a The roles of proline and polyamines (PAs) in the drought stress responses of tobacco plants were investigated by comparing the responses to drought alone and drought in combination with heat in the upper and lower leaves and roots of wild-type tobacco plants and transformants that constitutively over-express a modified gene for the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase (P5CSF129A; EC 2.7.2.11/1.2.1.41). In both genotypes, drought stress coincided with a decrease in relative water content (RWC) that was much less severe in the upper leaves than elsewhere in the plant. The drought also increased proline levels in both genotypes. A brief period of heat stress (2 h at 40 °C) at the end of the drought period did not significantly influence the proline levels in the upper leaves and roots but caused a further increase in the lower leaves of both genotypes. The rate at which these elevated proline levels returned to normal during the post-stress recovery period was slower in the transformants and plants that had been subjected to the combined stress. In both genotypes, drought stress significantly reduced the levels of spermidine (Spd) and putrescine (Put) in the leaves and roots relative to those for controls, and increased the levels of spermine (Spm) and diaminopropane (Dap, formed by the oxidative deamination of Spd and Spm). Spd levels may have declined due to its consumption in Spm biosynthesis and/or oxidation by polyamine oxidase (PAO; EC 1.5.3.11) to form Dap, which became more abundant during drought stress. During the rewatering period, the plants' Put and Spd levels recovered quickly and the activity of the PA biosynthesis enzymes in their leaves and roots increased substantially; this increase was more pronounced in transformants than WT plants. The high levels of Spm observed in drought stressed plants persisted even after the 24 h recovery and rewatering phase. The malondialdehyde (MDA) contents of the lower leaves of WTs increased substantially during the drought stress period; a less pronounced increase occurred in the transformants and after the application of the combined stress. After the post-stress recovery period, the MDA contents in the leaves of both genotypes were higher than those in the corresponding controls. The MDA contents of the upper leaves in plants of both genotypes remained relatively constant throughout, indicating that these leaves are preferentially protected against the adverse effects of oxidative stress and demonstrating the efficiency of the plants' induced antioxidative defense mechanisms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a ADC 
650 4 |a DAO 
650 4 |a DM 
650 4 |a Drought 
650 4 |a FM 
650 4 |a Heat stress 
650 4 |a MDA 
650 4 |a N-Spd 
650 4 |a N-Spm 
650 4 |a ODC 
650 4 |a PAO 
650 4 |a PAs 
650 4 |a Polyamines 
650 4 |a Proline 
650 4 |a Put 
650 4 |a ROS 
650 4 |a RWC 
650 4 |a S-adenosylmethionine decarboxylase 
650 4 |a SAMDC 
650 4 |a SM 
650 4 |a Spd 
650 4 |a Spm 
650 4 |a Tobacco plants 
650 4 |a arginine decarboxylase 
650 4 |a diamine oxidase 
650 4 |a dry mass 
650 4 |a fresh mass 
650 4 |a malondialdehyde 
650 4 |a norspermidine 
650 4 |a norspermine 
650 4 |a ornithine decarboxylase 
650 4 |a polyamine oxidase 
650 4 |a polyamines 
650 4 |a putrescine 
650 4 |a reactive oxygen species 
650 4 |a relative water content 
650 4 |a spermidine 
650 4 |a spermine 
650 4 |a water-saturated mass 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a Multienzyme Complexes  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Polyamines  |2 NLM 
650 7 |a Pyrroles  |2 NLM 
650 7 |a delta(1)-pyrroline-5-carboxylate synthetase, Arabidopsis  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a delta-1-pyrroline-5-carboxylate  |2 NLM 
650 7 |a 2906-39-0  |2 NLM 
650 7 |a Spermine  |2 NLM 
650 7 |a 2FZ7Y3VOQX  |2 NLM 
650 7 |a Malondialdehyde  |2 NLM 
650 7 |a 4Y8F71G49Q  |2 NLM 
650 7 |a Proline  |2 NLM 
650 7 |a 9DLQ4CIU6V  |2 NLM 
650 7 |a Glutamate-5-Semialdehyde Dehydrogenase  |2 NLM 
650 7 |a EC 1.2.1.41  |2 NLM 
650 7 |a Oxidoreductases Acting on CH-NH Group Donors  |2 NLM 
650 7 |a EC 1.5.-  |2 NLM 
650 7 |a Phosphotransferases (Alcohol Group Acceptor)  |2 NLM 
650 7 |a EC 2.7.1.-  |2 NLM 
650 7 |a Spermidine  |2 NLM 
650 7 |a U87FK77H25  |2 NLM 
650 7 |a Putrescine  |2 NLM 
650 7 |a V10TVZ52E4  |2 NLM 
700 1 |a Gemperlová, Lenka  |e verfasserin  |4 aut 
700 1 |a Martincová, Olga  |e verfasserin  |4 aut 
700 1 |a Vanková, Radomira  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 73(2013) vom: 09. Dez., Seite 7-15  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:73  |g year:2013  |g day:09  |g month:12  |g pages:7-15 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2013.08.005  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 73  |j 2013  |b 09  |c 12  |h 7-15