Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids

Copyright © 2013 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 34(2013), 29 vom: 05. Nov., Seite 2557-67
1. Verfasser: Maintz, Stefan (VerfasserIn)
Weitere Verfasser: Deringer, Volker L, Tchougréeff, Andrei L, Dronskowski, Richard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article chemical bonding crystal orbital Hamilton population density-functional theory population analysis projector augmented-wave method
LEADER 01000naa a22002652 4500
001 NLM230745091
003 DE-627
005 20231224085131.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23424  |2 doi 
028 5 2 |a pubmed24n0769.xml 
035 |a (DE-627)NLM230745091 
035 |a (NLM)24022911 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maintz, Stefan  |e verfasserin  |4 aut 
245 1 0 |a Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.04.2014 
500 |a Date Revised 30.09.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2013 Wiley Periodicals, Inc. 
520 |a Quantum-chemical computations of solids benefit enormously from numerically efficient plane-wave (PW) basis sets, and together with the projector augmented-wave (PAW) method, the latter have risen to one of the predominant standards in computational solid-state sciences. Despite their advantages, plane waves lack local information, which makes the interpretation of local densities-of-states (DOS) difficult and precludes the direct use of atom-resolved chemical bonding indicators such as the crystal orbital overlap population (COOP) and the crystal orbital Hamilton population (COHP) techniques. Recently, a number of methods have been proposed to overcome this fundamental issue, built around the concept of basis-set projection onto a local auxiliary basis. In this work, we propose a novel computational technique toward this goal by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions. In particular, we describe a general approach to project both PW and PAW eigenstates onto given custom orbitals, which we then exemplify at the hand of contracted multiple-ζ Slater-type orbitals. The validity of the method presented here is illustrated by applications to chemical textbook examples-diamond, gallium arsenide, the transition-metal titanium-as well as nanoscale allotropes of carbon: a nanotube and the C60 fullerene. Remarkably, the analytical approach not only recovers the total and projected electronic DOS with a high degree of confidence, but it also yields a realistic chemical-bonding picture in the framework of the projected COHP method 
650 4 |a Journal Article 
650 4 |a chemical bonding 
650 4 |a crystal orbital Hamilton population 
650 4 |a density-functional theory 
650 4 |a population analysis 
650 4 |a projector augmented-wave method 
700 1 |a Deringer, Volker L  |e verfasserin  |4 aut 
700 1 |a Tchougréeff, Andrei L  |e verfasserin  |4 aut 
700 1 |a Dronskowski, Richard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 34(2013), 29 vom: 05. Nov., Seite 2557-67  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:34  |g year:2013  |g number:29  |g day:05  |g month:11  |g pages:2557-67 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23424  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2013  |e 29  |b 05  |c 11  |h 2557-67