Bayesian Frequentist hybrid Model wth Application to the Analysis of Gene Copy Number Changes

Gene copy number (GCN) changes are common characteristics of many genetic diseases. Comparative genomic hybridization (CGH) is a new technology widely used today to screen the GCN changes in mutant cells with high resolution genome-wide. Statistical methods for analyzing such CGH data have been evol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 38(2011), 5 vom: 30., Seite 987-1005
1. Verfasser: Yuan, Ao (VerfasserIn)
Weitere Verfasser: Chen, Guanjie, Xiong, Juan, He, Wenqing, Rotimi, Charles
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian Frequentist Gene copy number Hybrid model prior information
LEADER 01000caa a22002652 4500
001 NLM230679692
003 DE-627
005 20250215213337.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0768.xml 
035 |a (DE-627)NLM230679692 
035 |a (NLM)24014930 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Ao  |e verfasserin  |4 aut 
245 1 0 |a Bayesian Frequentist hybrid Model wth Application to the Analysis of Gene Copy Number Changes 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 18.03.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Gene copy number (GCN) changes are common characteristics of many genetic diseases. Comparative genomic hybridization (CGH) is a new technology widely used today to screen the GCN changes in mutant cells with high resolution genome-wide. Statistical methods for analyzing such CGH data have been evolving. Existing methods are either frequentist's, or full Bayesian. The former often has computational advantage, while the latter can incorporate prior information into the model, but could be misleading when one does not have sound prior information. In an attempt to take full advantages of both approaches, we develop a Bayesian-frequentist hybrid approach, in which a subset of the model parameters is inferred by the Bayesian method, while the rest parameters by the frequentist's. This new hybrid approach provides advantages over those of the Bayesian or frequentist's method used alone. This is especially the case when sound prior information is available on part of the parameters, and the sample size is relatively small. Spatial dependence and false discovery rate are also discussed, and the parameter estimation is efficient. As an illustration, we used the proposed hybrid approach to analyze a real CGH data 
650 4 |a Journal Article 
650 4 |a Bayesian 
650 4 |a Frequentist 
650 4 |a Gene copy number 
650 4 |a Hybrid model 
650 4 |a prior information 
700 1 |a Chen, Guanjie  |e verfasserin  |4 aut 
700 1 |a Xiong, Juan  |e verfasserin  |4 aut 
700 1 |a He, Wenqing  |e verfasserin  |4 aut 
700 1 |a Rotimi, Charles  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 38(2011), 5 vom: 30., Seite 987-1005  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:38  |g year:2011  |g number:5  |g day:30  |g pages:987-1005 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2011  |e 5  |b 30  |h 987-1005