Water quality assessment and analysis of spatial patterns and temporal trends

This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 85(2013), 8 vom: 09. Aug., Seite 751-66
1. Verfasser: Gazzaz, Nabeel M (VerfasserIn)
Weitere Verfasser: Yusoff, Mohd Kamil, Juahir, Hafizan, Ramli, Mohammad Firuz, Aris, Ahmad Zaharin
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM230571905
003 DE-627
005 20250215210800.0
007 tu
008 231224s2013 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0768.xml 
035 |a (DE-627)NLM230571905 
035 |a (NLM)24003601 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gazzaz, Nabeel M  |e verfasserin  |4 aut 
245 1 0 |a Water quality assessment and analysis of spatial patterns and temporal trends 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 27.09.2013 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank correlation analysis, multiple linear regression, and artificial neural network modeling. Correlation analysis indicated that from a temporal perspective, the WQI, temperature, and zinc, arsenic, chemical oxygen demand, sodium, and dissolved oxygen concentrations increased, whereas turbidity and suspended solids, total solids, nitrate nitrogen (NO3-N), and biochemical oxygen demand concentrations decreased with year. From a spatial perspective, an increase with distance of the sampling station from the headwater was exhibited by 10 WQVs: magnesium, calcium, dissolved solids, electrical conductivity, temperature, NO3-N, arsenic, chloride, potassium, and sodium. At the same time, the WQI; Escherichia coli bacteria counts; and suspended solids, total solids, and dissolved oxygen concentrations decreased with distance from the headwater. Lastly, regression and artificial neural network models with high prediction powers (81.2% and 91.4%, respectively) were developed and are discussed 
650 4 |a Journal Article 
700 1 |a Yusoff, Mohd Kamil  |e verfasserin  |4 aut 
700 1 |a Juahir, Hafizan  |e verfasserin  |4 aut 
700 1 |a Ramli, Mohammad Firuz  |e verfasserin  |4 aut 
700 1 |a Aris, Ahmad Zaharin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 85(2013), 8 vom: 09. Aug., Seite 751-66  |w (DE-627)NLM098214292  |x 1061-4303  |7 nnns 
773 1 8 |g volume:85  |g year:2013  |g number:8  |g day:09  |g month:08  |g pages:751-66 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 85  |j 2013  |e 8  |b 09  |c 08  |h 751-66