Liquid-gel-liquid transition and shear thickening in mixed suspensions of silica colloid and hyperbranched polyethyleneimine

The rheological property of mixed suspensions of silica colloid and hyperbranched polyethyleneimine (hPEI) was studied as functions of particle volume fraction, ratio of polymer to particle, and pH value. A mechanism of liquid-gel-liquid transition for this mixed system was proposed based on the amo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 39 vom: 01. Okt., Seite 12110-7
1. Verfasser: Zhang, Huan (VerfasserIn)
Weitere Verfasser: Yuan, Guangcui, Zhao, Chuanzhuang, Han, Charles C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The rheological property of mixed suspensions of silica colloid and hyperbranched polyethyleneimine (hPEI) was studied as functions of particle volume fraction, ratio of polymer to particle, and pH value. A mechanism of liquid-gel-liquid transition for this mixed system was proposed based on the amount and the conformation of polyelectrolyte bridges which were able to self-arrange with solution environments. The hPEI, which is adsorptive to the surface of silica colloid, can induce bridging or stabilizing effect between particles depending on whether the concentration of hPEI (Cp) is smaller or larger than the equilibrium adsorbed amount (Cp*) for a given volume fraction of particles. In dilute colloid suspensions, the Cp* can be determined by dynamic light scattering as the correlation function returns back to a narrow distributing single relaxation with increasing Cp. In concentrated colloid suspensions, the Cp* can be determined by rheological measurement as gel-liquid transition occurs with increasing Cp. The Cp* is an important concentration ratio of polymer to particle denoting the transition of irreversible and reversible bridging. For mixed suspensions at equilibrium adsorbed state (Cp ≈ Cp*), the adsorption-desorption of polymer bridges on the particles can reversibly take place, and shear thickening is observed under a steady shear flow as a result of rapid extension of bridges when the relaxation time scale of extension is shorter than that of desorption
Beschreibung:Date Completed 29.04.2014
Date Revised 01.10.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la402577q