Design and fabrication of a new class of nano hybrid materials based on reactive polymeric molecular cages

This paper describes a strategy of fabricating a new class of nano hybrid particles in terms of the "nanocages" of reactive molecular matrices/networks. The concept is to design molecular matrices functionalized with particular reactive groups, which can on-site synthesize and fix nanopart...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 29(2013), 36 vom: 10. Sept., Seite 11498-505
1. Verfasser: Zhang, De Suo (VerfasserIn)
Weitere Verfasser: Liu, Xiang Yang, Li, Jing Liang, Xu, Hong Yao, Lin, Hong, Chen, Yu Yue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper describes a strategy of fabricating a new class of nano hybrid particles in terms of the "nanocages" of reactive molecular matrices/networks. The concept is to design molecular matrices functionalized with particular reactive groups, which can on-site synthesize and fix nanoparticles at the designated positions of the molecular networks. The cages of the molecular networks impose the confinement and protection to the nanoparticles so that the size and the stability of nano hybrid particles can be better controlled. To this end, polyamide network polymers (PNP) were synthesized and adopted as the reactive molecular cages for the control of silver nanoparticles formation. It follows that the silver nano hybrid particles fabricated by this method have an average diameter of 4.34 nm much smaller than any other or similar methods ie by a hyperbranched polyamide polymer (HB-PA). As per our design, the size of the silver nano hybrid particles can also be tuned by controlling the molar ratio between silver ions and the functional groups in the polymeric matrices. The silver nano hybrid particles reveal the substantially enhanced stability in aqueous solutions, which gives rise to the long stable performance of localized surface plasmon resonance. As the nano hybrid particles display long eminent nanoeffects, they exert broad implications for a wide range of applications such as biomedicine, catalysis, and optoelectronics
Beschreibung:Date Completed 21.03.2014
Date Revised 01.09.2016
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la4023085