Analysis of DNA repair helicase UvrD from Arabidopsis thaliana and Oryza sativa

Copyright © 2013 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 71(2013) vom: 15. Okt., Seite 254-60
1. Verfasser: Tuteja, Renu (VerfasserIn)
Weitere Verfasser: Tuteja, Narendra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis BER DNA repair DR E. coli Escherichia coli Genotoxic stress Helicase mehr... MMR NER PUR PcrA UvrD Rep Plants Rice base excision repair direct repair mismatch repair nucleotide excision repair Plant Proteins DNA Helicases EC 3.6.4.-
Beschreibung
Zusammenfassung:Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Mismatch repair (MMR) proteins play important roles in maintaining genome stability in all the organisms. Studies of MMR genes in plants have identified several homologs of the Escherichia coli genes. Crop yield is directly related to genome stability, which is crucially required for optimal plant growth and development. Numerous genotoxic stresses such as UV light, radiations, pollutants and heavy metals cause DNA damage leading to genome instability, which can interfere with the plant growth and crop productivity. But the efficient repair mechanisms can help to overcome the deleterious effects of the damage. Therefore it is important to study the genes involved in various repair pathways in the plants in greater detail. UvrD helicase is a component of MMR complex and plays an essential role in the DNA repair by providing the unwinding function. In the present manuscript we present an in silico analysis of UvrD helicase from two plant species (Arabidopsis and rice). The Arabidopsis thaliana and Oryza sativa UvrD are 1149 (~129 kDa) and 1165 amino-acids (~130 kDa) proteins, respectively. These proteins contain all the conserved domains and are larger than the E. coli UvrD because they contain a longer N-terminal extension. In order to decipher the role of plant UvrD in various stresses it will be important to study the biochemical and functional properties of this enzyme
Beschreibung:Date Completed 02.05.2014
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2013.07.022