Multiview face detection and registration requiring minimal manual intervention

Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 10 vom: 01. Okt., Seite 2484-97
1. Verfasser: Anvar, Seyed Mohammad Hassan (VerfasserIn)
Weitere Verfasser: Yau, Wei-Yun, Teoh, Eam Khwang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM230254659
003 DE-627
005 20231224083956.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.37  |2 doi 
028 5 2 |a pubmed24n0767.xml 
035 |a (DE-627)NLM230254659 
035 |a (NLM)23969391 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Anvar, Seyed Mohammad Hassan  |e verfasserin  |4 aut 
245 1 0 |a Multiview face detection and registration requiring minimal manual intervention 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2014 
500 |a Date Revised 23.08.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yau, Wei-Yun  |e verfasserin  |4 aut 
700 1 |a Teoh, Eam Khwang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 10 vom: 01. Okt., Seite 2484-97  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:10  |g day:01  |g month:10  |g pages:2484-97 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.37  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 10  |b 01  |c 10  |h 2484-97