Lyotropic liquid crystalline phases of a phytosterol ethoxylate in amide solvents

Materials exhibiting unique aggregation behavior in nonaqueous solvents have attracted attention due to their wide applications. Motivated by this recent interest, the aggregation properties of a phytosterol ethoxylate surfactant, BPS-10, in three organic amide compounds, formamide (FA), N-methylfor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 35 vom: 03. Sept., Seite 11013-21
1. Verfasser: Yue, Xiu (VerfasserIn)
Weitere Verfasser: Chen, Xiao, Li, Qintang, Li, Zhihong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Formamides Phytosterols Solvents Surface-Active Agents formamide 4781T907ZS Dimethylformamide 8696NH0Y2X mehr... methylformamide XPE4G7Y986
Beschreibung
Zusammenfassung:Materials exhibiting unique aggregation behavior in nonaqueous solvents have attracted attention due to their wide applications. Motivated by this recent interest, the aggregation properties of a phytosterol ethoxylate surfactant, BPS-10, in three organic amide compounds, formamide (FA), N-methylformamide (NMF), and N,N-dimethyl- formamide (DMF), have been studied. Polarized optical microscopy and small-angle X-ray scattering techniques were used to investigate the lyotropic liquid crystalline (LLC) phases formed in these binary systems. Herein, we discuss the relationship between subtle intermolecular interactions and the aggregation behavior of BPS-10. As good proton donors or acceptors to form hydrogen bonding, FA molecules allow BPS-10 to show a richer phase behavior. Compared with the systems formed in water and ionic liquids, the LLCs constructed in FA have higher thermal stability. In addition, two kinds of lamellar phases could coexist in a narrow region. With the methyl replacement in formamide, however, the ability to form hydrogen bonds is reduced and the solvent bulk phase structure becomes less ordered from FA to DMF. Consequently, the solvophobic interaction of BPS-10 becomes weaker, and the LLCs are more difficult to form. In addition, the extra strong interactions between the steroid rings of BPS-10 may provide enough driving force to produce the hexagonal phase (H1) directly in NMF and DMF without micelle formation, thereby creating a novel sequence (isotropic → H1 → Lα) of ordered phases with increasing surfactant concentration. The results discussed herein should prove to be a useful complement to the growing body of literature regarding steroid surfactant aggregation in polar organic solvents
Beschreibung:Date Completed 17.03.2014
Date Revised 03.09.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la4024162