Cylinder detection in large-scale point cloud of pipeline plant

The huge number of points scanned from pipeline plants make the plant reconstruction very difficult. Traditional cylinder detection methods cannot be applied directly due to the high computational complexity. In this paper, we explore the structural characteristics of point cloud in pipeline plants...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 19(2013), 10 vom: 08. Okt., Seite 1700-7
1. Verfasser: Liu, Yong-Jin (VerfasserIn)
Weitere Verfasser: Zhang, Jun-Bin, Hou, Ji-Chun, Ren, Ji-Cheng, Tang, Wei-Qing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The huge number of points scanned from pipeline plants make the plant reconstruction very difficult. Traditional cylinder detection methods cannot be applied directly due to the high computational complexity. In this paper, we explore the structural characteristics of point cloud in pipeline plants and define a structure feature. Based on the structure feature, we propose a hierarchical structure detection and decomposition method that reduces the difficult pipeline-plant reconstruction problem in IR³ into a set of simple circle detection problems in IR². Experiments with industrial applications are presented, which demonstrate the efficiency of the proposed structure detection method
Beschreibung:Date Completed 26.02.2014
Date Revised 09.08.2013
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2013.74