Allocation of gross primary production in forest ecosystems : allometric constraints and environmental responses

© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1990. - 200(2013), 4 vom: 19. Dez., Seite 1176-86
1. Verfasser: Chen, Guangshui (VerfasserIn)
Weitere Verfasser: Yang, Yusheng, Robinson, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't assimilate allocation carbon accumulation climate change forest ecosystems optimal partitioning plant allometry
Beschreibung
Zusammenfassung:© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Understanding the allocation of gross primary production (GPP) and its response to climate is essential for improving terrestrial carbon (C) modelling. Here, we synthesize data on component GPP fluxes from a worldwide forest database to determine the allocation patterns of GPP across global gradients in climate and nitrogen deposition (Ndep ). Our results reveal that allocation of GPP is governed in an integrated way by allometric constraints and by three trade-offs among GPP components: wood production (NPPwood ) vs fine-root production (NPPfroot ), NPPwood vs foliage production (NPPfoliage ), and autotrophic respiration (Ra ) vs all biomass production components. Component fluxes were explained more by allometry, while partitioning to components was related more closely to the trade-offs. Elevated temperature and Ndep benefit long-term woody biomass C sequestration by stimulating allometric partitioning to wood. Ndep can also enhance forest C use efficiency by its effects on the Ra vs biomass production trade-off. Greater precipitation affects C allocation by driving the NPPwood vs NPPfoliage trade-off toward the latter component. These results advance our understanding about the global constraints on GPP allocation in forest ecosystems and its climatic responses, and are therefore valuable for simulations and projections of ecosystem C sequestration
Beschreibung:Date Completed 04.11.2014
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12426