General subspace learning with corrupted training data via graph embedding

We address the following subspace learning problem: supposing we are given a set of labeled, corrupted training data points, how to learn the underlying subspace, which contains three components: an intrinsic subspace that captures certain desired properties of a data set, a penalty subspace that fi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 11 vom: 16. Nov., Seite 4380-93
1. Verfasser: Bao, Bing-Kun (VerfasserIn)
Weitere Verfasser: Liu, Guangcan, Hong, Richang, Yan, Shuicheng, Xu, Changsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't