Interactions between nanostructured calcium hydroxide and acrylate copolymers : implications in cultural heritage conservation

The interactions between an acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly(EMA/MA), and Ca(OH)2 nanoparticles were investigated in order to establish the reciprocal influence of these two compounds on their peculiar properties. The carbonation kinetics of Ca(OH)2 nanoparticle...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 31 vom: 06. Aug., Seite 9881-90
1. Verfasser: Carretti, Emiliano (VerfasserIn)
Weitere Verfasser: Chelazzi, David, Rocchigiani, Giulia, Baglioni, Piero, Poggi, Giovanna, Dei, Luigi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acrylates Polymers acrylic acid J94PBK7X8S Calcium Hydroxide PF5DZW74VN
Beschreibung
Zusammenfassung:The interactions between an acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly(EMA/MA), and Ca(OH)2 nanoparticles were investigated in order to establish the reciprocal influence of these two compounds on their peculiar properties. The carbonation kinetics of Ca(OH)2 nanoparticles by atmospheric CO2 was investigated by FTIR and SEM measurements and compared to that of a nanocomposite film. CaCO3 formation occurred even in the presence of the copolymer, but only after an induction period of ca. 200 h and with a lower reaction rate. Some implications in cultural heritage conservation dealing with application of nanolime on artifacts previously treated with acrylic copolymers were discussed. Contact angle measurements, mechanical cohesion properties, and water vapor permeability allowed us to conclude that the optimum behavior of nanolime with respect to transpiration was not compromised by the presence of the copolymer, and the behavior in terms of mechanical properties recovery by the application of Ca(OH)2 nanoparticles remained excellent even in the presence of poly(EMA/MA)
Beschreibung:Date Completed 25.02.2014
Date Revised 06.08.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la401883g