Nanoporous graphitic carbon nitride with enhanced photocatalytic performance

Nanoporous g-C3N4 (npg-C3N4) with high surface area was prepared by a bubble-templating method. A higher calcination heating rate and proportion of thiourea can result in a larger surface area and better adsorption and photodegradation activities of npg-C3N4. Compared with the bulk g-C3N4, the adsor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 33 vom: 20. Aug., Seite 10566-72
1. Verfasser: Xu, Jing (VerfasserIn)
Weitere Verfasser: Wang, Yajun, Zhu, Yongfa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Nanoporous g-C3N4 (npg-C3N4) with high surface area was prepared by a bubble-templating method. A higher calcination heating rate and proportion of thiourea can result in a larger surface area and better adsorption and photodegradation activities of npg-C3N4. Compared with the bulk g-C3N4, the adsorption capacity for the target pollutants and photocatalytic degradation and photocurrent performances under visible light irradiation of npg-C3N4 were greatly improved. The optimal photodegradation activity of npg-C3N4 was 3.4 times as high as that of the bulk g-C3N4. The enhanced activities of npg-C3N4 can be attributed to the larger number of surface active sites, improved separation of photogenerated electron-hole pairs, and higher efficiency of charge immigration
Beschreibung:Date Completed 05.03.2014
Date Revised 20.08.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la402268u