Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew

Copyright © 2013 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 170(2013), 18 vom: 15. Dez., Seite 1620-9
1. Verfasser: Tayeh, Christine (VerfasserIn)
Weitere Verfasser: Randoux, Béatrice, Bourdon, Natacha, Reignault, Philippe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't AGT BTH Bgt Blumeria graminis Blumeria graminis f. sp. tritici Eth HSA LOX mehr... Lipid metabolism PGT PI-PLC2 Real-time PCR Resistance inducer SA Salicylic acid Triticum aestivum appressorial germ tube benzothiadizole ethanol hai heptanoyl salicylic acid hours after inoculation hours post treatment hps i inoculated lipid transfer protein lipoxygenase ltp ni non-inoculated phospholipase C2 primary germ tube salicylic acid Salicylates Lipoxygenase EC 1.13.11.12 Salicylic Acid O414PZ4LPZ
LEADER 01000naa a22002652 4500
001 NLM229404200
003 DE-627
005 20231224082101.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2013.06.015  |2 doi 
028 5 2 |a pubmed24n0764.xml 
035 |a (DE-627)NLM229404200 
035 |a (NLM)23880093 
035 |a (PII)S0176-1617(13)00272-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tayeh, Christine  |e verfasserin  |4 aut 
245 1 0 |a Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.05.2014 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier GmbH. All rights reserved. 
520 |a Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a AGT 
650 4 |a BTH 
650 4 |a Bgt 
650 4 |a Blumeria graminis 
650 4 |a Blumeria graminis f. sp. tritici 
650 4 |a Eth 
650 4 |a HSA 
650 4 |a LOX 
650 4 |a Lipid metabolism 
650 4 |a PGT 
650 4 |a PI-PLC2 
650 4 |a Real-time PCR 
650 4 |a Resistance inducer 
650 4 |a SA 
650 4 |a Salicylic acid 
650 4 |a Triticum aestivum 
650 4 |a appressorial germ tube 
650 4 |a benzothiadizole 
650 4 |a ethanol 
650 4 |a hai 
650 4 |a heptanoyl salicylic acid 
650 4 |a hours after inoculation 
650 4 |a hours post treatment 
650 4 |a hps 
650 4 |a i 
650 4 |a inoculated 
650 4 |a lipid transfer protein 
650 4 |a lipoxygenase 
650 4 |a ltp 
650 4 |a ni 
650 4 |a non-inoculated 
650 4 |a phospholipase C2 
650 4 |a primary germ tube 
650 4 |a salicylic acid 
650 7 |a Salicylates  |2 NLM 
650 7 |a heptanoyl salicylic acid  |2 NLM 
650 7 |a Lipoxygenase  |2 NLM 
650 7 |a EC 1.13.11.12  |2 NLM 
650 7 |a Salicylic Acid  |2 NLM 
650 7 |a O414PZ4LPZ  |2 NLM 
700 1 |a Randoux, Béatrice  |e verfasserin  |4 aut 
700 1 |a Bourdon, Natacha  |e verfasserin  |4 aut 
700 1 |a Reignault, Philippe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 170(2013), 18 vom: 15. Dez., Seite 1620-9  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:170  |g year:2013  |g number:18  |g day:15  |g month:12  |g pages:1620-9 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2013.06.015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 170  |j 2013  |e 18  |b 15  |c 12  |h 1620-9