Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices

Covariance matrices have found success in several computer vision applications, including activity recognition, visual surveillance, and diffusion tensor imaging. This is because they provide an easy platform for fusing multiple features compactly. An important task in all of these applications is t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 9 vom: 20. Sept., Seite 2161-74
1. Verfasser: Cherian, Anoop (VerfasserIn)
Weitere Verfasser: Sra, Suvrit, Banerjee, Arindam, Papanikolopoulos, Nikolaos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM229294944
003 DE-627
005 20250215162722.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.259  |2 doi 
028 5 2 |a pubmed25n0764.xml 
035 |a (DE-627)NLM229294944 
035 |a (NLM)23868777 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cherian, Anoop  |e verfasserin  |4 aut 
245 1 0 |a Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.02.2014 
500 |a Date Revised 22.07.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Covariance matrices have found success in several computer vision applications, including activity recognition, visual surveillance, and diffusion tensor imaging. This is because they provide an easy platform for fusing multiple features compactly. An important task in all of these applications is to compare two covariance matrices using a (dis)similarity function, for which the common choice is the Riemannian metric on the manifold inhabited by these matrices. As this Riemannian manifold is not flat, the dissimilarities should take into account the curvature of the manifold. As a result, such distance computations tend to slow down, especially when the matrix dimensions are large or gradients are required. Further, suitability of the metric to enable efficient nearest neighbor retrieval is an important requirement in the contemporary times of big data analytics. To alleviate these difficulties, this paper proposes a novel dissimilarity measure for covariances, the Jensen-Bregman LogDet Divergence (JBLD). This divergence enjoys several desirable theoretical properties and at the same time is computationally less demanding (compared to standard measures). Utilizing the fact that the square root of JBLD is a metric, we address the problem of efficient nearest neighbor retrieval on large covariance datasets via a metric tree data structure. To this end, we propose a K-Means clustering algorithm on JBLD. We demonstrate the superior performance of JBLD on covariance datasets from several computer vision applications 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Sra, Suvrit  |e verfasserin  |4 aut 
700 1 |a Banerjee, Arindam  |e verfasserin  |4 aut 
700 1 |a Papanikolopoulos, Nikolaos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 9 vom: 20. Sept., Seite 2161-74  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:9  |g day:20  |g month:09  |g pages:2161-74 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.259  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 9  |b 20  |c 09  |h 2161-74