Self-similar anisotropic texture analysis : the hyperbolic wavelet transform contribution
Textures in images can often be well modeled using self-similar processes while they may simultaneously display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 11 vom: 17. Nov., Seite 4353-63 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Textures in images can often be well modeled using self-similar processes while they may simultaneously display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will be first shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform with the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axes. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized; this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a nonparametric bootstrap based procedure is described, which provides confidence intervals in addition to the estimates themselves and enables us to construct an isotropy test procedure, which can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis are illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed |
---|---|
Beschreibung: | Date Completed 14.04.2014 Date Revised 19.09.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2013.2272515 |