Development of demand forecasting tool for natural resources recouping from municipal solid waste

Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 31(2013), 10 Suppl vom: 13. Okt., Seite 17-25
1. Verfasser: Zaman, Atiq Uz (VerfasserIn)
Weitere Verfasser: Lehmann, Steffen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't Waste management demand forecasting tool resource recouping zero waste zero waste index Solid Waste
Beschreibung
Zusammenfassung:Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively
Beschreibung:Date Completed 05.05.2014
Date Revised 10.12.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X13496304