|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM229004741 |
003 |
DE-627 |
005 |
20231224081213.0 |
007 |
tu |
008 |
231224s2013 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0763.xml
|
035 |
|
|
|a (DE-627)NLM229004741
|
035 |
|
|
|a (NLM)23837325
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xue, S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Changes in quantity and spectroscopic properties of water-extractable organic matter during soil aquifer treatment
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2013
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Organic Chemicals
|2 NLM
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
700 |
1 |
|
|a Zhao, Q L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, L L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, X P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tie, M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1993
|g 34(2013), 5-8 vom: 20. März, Seite 737-46
|w (DE-627)NLM098202545
|x 1479-487X
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2013
|g number:5-8
|g day:20
|g month:03
|g pages:737-46
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2013
|e 5-8
|b 20
|c 03
|h 737-46
|