A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness

Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literatu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis. - 1998. - 117(2013) vom: 20. Mai, Seite 1-13
1. Verfasser: Chen, Baojiang (VerfasserIn)
Weitere Verfasser: Zhou, Xiao-Hua
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of multivariate analysis
Schlagworte:Journal Article Cluster Markov non-homogeneous missing not at random random effects transition intensity
LEADER 01000caa a22002652 4500
001 NLM228921031
003 DE-627
005 20250215150433.0
007 tu
008 231224s2013 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0763.xml 
035 |a (DE-627)NLM228921031 
035 |a (NLM)23828666 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Baojiang  |e verfasserin  |4 aut 
245 1 2 |a A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study 
650 4 |a Journal Article 
650 4 |a Cluster 
650 4 |a Markov non-homogeneous 
650 4 |a missing not at random 
650 4 |a random effects 
650 4 |a transition intensity 
700 1 |a Zhou, Xiao-Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of multivariate analysis  |d 1998  |g 117(2013) vom: 20. Mai, Seite 1-13  |w (DE-627)NLM098253794  |x 0047-259X  |7 nnns 
773 1 8 |g volume:117  |g year:2013  |g day:20  |g month:05  |g pages:1-13 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 117  |j 2013  |b 20  |c 05  |h 1-13