Optimized sampling strategy for measurement of biomass properties during full-scale composting

Biomass to be composted is often very heterogeneous and collection of representative samples for determination of compost properties is therefore difficult, especially under full-scale conditions. During full-scale composting different biomasses in the amount of 10-100 tons are mixed, yielding a ver...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 31(2013), 8 vom: 20. Aug., Seite 775-82
1. Verfasser: Sadef, Yumna (VerfasserIn)
Weitere Verfasser: Poulsen, Tjalfe Gorm, Bester, Kai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Measurement uncertainty minimization biomass properties coefficient of variation homogenization optimal sampling strategy Soil
Beschreibung
Zusammenfassung:Biomass to be composted is often very heterogeneous and collection of representative samples for determination of compost properties is therefore difficult, especially under full-scale conditions. During full-scale composting different biomasses in the amount of 10-100 tons are mixed, yielding a very heterogeneous mixture. Final sample size for compost property determination is usually a few grams compared with compost pile masses of hundreds of tons. Desired sample particle size is about 1 mm, while compost particle size ranges from 5 to 50 cm. This study focuses on the development of a strategy for sampling under full-scale conditions for minimum measurement uncertainty based on selected material properties. Optimization was conducted considering multiple parameters, such as number of pile turnings before sampling, number of samples collected, sample mass, sample homogenization, particle size reduction and number of replicate measurements. Measurement uncertainty was evaluated using water content, inorganic matter content and nutrient (nitrogen, phosphorus) content. For each parameter measurement variability was determined as a function of sampling strategy and used to identify optimal sampling strategy
Beschreibung:Date Completed 06.02.2014
Date Revised 16.11.2017
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X13496306