Image noise reduction via geometric multiscale ridgelet support vector transform and dictionary learning

Advances in machine learning technology have made efficient image denoising possible. In this paper, we propose a new ridgelet support vector machine (RSVM) for image noise reduction. Multiscale ridgelet support vector filter (MRSVF) is first deduced from RSVM, to produce a multiscale, multidirectio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 11 vom: 21. Nov., Seite 4161-9
1. Verfasser: Yang, Shuyuan (VerfasserIn)
Weitere Verfasser: Min, Wang, Zhao, Linfang, Wang, Zhiyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM228715598
003 DE-627
005 20231224080543.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2271114  |2 doi 
028 5 2 |a pubmed24n0762.xml 
035 |a (DE-627)NLM228715598 
035 |a (NLM)23807440 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Shuyuan  |e verfasserin  |4 aut 
245 1 0 |a Image noise reduction via geometric multiscale ridgelet support vector transform and dictionary learning 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2014 
500 |a Date Revised 19.11.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Advances in machine learning technology have made efficient image denoising possible. In this paper, we propose a new ridgelet support vector machine (RSVM) for image noise reduction. Multiscale ridgelet support vector filter (MRSVF) is first deduced from RSVM, to produce a multiscale, multidirection, undecimated, dyadic, aliasing, and shift-invariant geometric multiscale ridgelet support vector transform (GMRSVT). Then, multiscale dictionaries are learned from examples to reduce noises existed in GMRSVT coefficients. Compared with the available approaches, the proposed method has the following characteristics. The proposed MRSVF can extract the salient features associated with the linear singularities of images. Consequently, GMRSVT can well approximate edges, contours and textures in images, and avoid ringing effects suffered from sampling in the multiscale decomposition of images. Sparse coding is explored for noise reduction via the learned multiscale and overcomplete dictionaries. Some experiments are taken on natural images, and the results show the efficiency of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Min, Wang  |e verfasserin  |4 aut 
700 1 |a Zhao, Linfang  |e verfasserin  |4 aut 
700 1 |a Wang, Zhiyi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 11 vom: 21. Nov., Seite 4161-9  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:11  |g day:21  |g month:11  |g pages:4161-9 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2271114  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 11  |b 21  |c 11  |h 4161-9