Sparse texture active contour

In image segmentation, we are often interested in using certain quantities to characterize the object, and perform the classification based on criteria such as mean intensity, gradient magnitude, and responses to certain predefined filters. Unfortunately, in many cases such quantities are not adequa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 10 vom: 01. Okt., Seite 3866-78
1. Verfasser: Gao, Yi (VerfasserIn)
Weitere Verfasser: Bouix, Sylvain, Shenton, Martha, Tannenbaum, Allen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM228640555
003 DE-627
005 20231224080405.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2263147  |2 doi 
028 5 2 |a pubmed24n0762.xml 
035 |a (DE-627)NLM228640555 
035 |a (NLM)23799695 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Yi  |e verfasserin  |4 aut 
245 1 0 |a Sparse texture active contour 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.04.2014 
500 |a Date Revised 21.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In image segmentation, we are often interested in using certain quantities to characterize the object, and perform the classification based on criteria such as mean intensity, gradient magnitude, and responses to certain predefined filters. Unfortunately, in many cases such quantities are not adequate to model complex textured objects. Along a different line of research, the sparse characteristic of natural signals has been recognized and studied in recent years. Therefore, how such sparsity can be utilized, in a non-parametric way, to model the object texture and assist the textural image segmentation process is studied in this paper, and a segmentation scheme based on the sparse representation of the texture information is proposed. More explicitly, the texture is encoded by the dictionaries constructed from the user initialization. Then, an active contour is evolved to optimize the fidelity of the representation provided by the dictionary of the target. In doing so, not only a non-parametric texture modeling technique is provided, but also the sparsity of the representation guarantees the computation efficiency. The experiments are carried out on the publicly available image data sets which contain a large variety of texture images, to analyze the user interaction, performance statistics, and to highlight the algorithm's capability of robustly extracting textured regions from an image 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Bouix, Sylvain  |e verfasserin  |4 aut 
700 1 |a Shenton, Martha  |e verfasserin  |4 aut 
700 1 |a Tannenbaum, Allen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 10 vom: 01. Okt., Seite 3866-78  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:10  |g day:01  |g month:10  |g pages:3866-78 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2263147  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 10  |b 01  |c 10  |h 3866-78