Determination of waste decay rate for a large Finnish landfill by calibrating methane generation models on the basis of methane recovery and emissions
The aim of this study was to determine the methane (CH(4)) generation factor (k) and CH(4) generation potential (L) for bulk waste in order to calibrate a CH(4) generation model (USEPA Landgem 3.02) and provide information on the remaining CH(4) generation potential in a large (54 ha) municipal soli...
Veröffentlicht in: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 31(2013), 10 vom: 25. Okt., Seite 979-85 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Water Pollutants, Chemical Methane OP0UW79H66 |
Zusammenfassung: | The aim of this study was to determine the methane (CH(4)) generation factor (k) and CH(4) generation potential (L) for bulk waste in order to calibrate a CH(4) generation model (USEPA Landgem 3.02) and provide information on the remaining CH(4) generation potential in a large (54 ha) municipal solid waste landfill located in a boreal climate. The CH(4) generation model was calibrated by actual CH(4) recovery and emission measurement data. Moreover, waste characterisation information from a previous study was considered.The appropriate k for bulk waste was 0.18 in the studied landfill, which indicated a higher rate of degradation than proposed by the Intergovernmental Panel on Climate Change as a default k value of 0.09 for wet conditions in boreal and temperate climes, whereas the calibrated L of 100 m(3)/t was lower than estimated on the basis of a previous waste characterisation study. The results demonstrate the importance of model calibration, as inappropriate model parameters may result in a large discrepancy (approximately 100 % or 119 million m(3) having an energy equivalent of nearly 1.2 TWh) in cumulative CH(4) generation estimates within a 18-year timescale (2012–30) at the studied landfill |
---|---|
Beschreibung: | Date Completed 18.10.2014 Date Revised 21.09.2015 published: Print Citation Status MEDLINE |
ISSN: | 1096-3669 |