Toward three-dimensional microelectronic systems : directed self-assembly of silicon microcubes via DNA surface functionalization

The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 or...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 26 vom: 02. Juli, Seite 8410-6
1. Verfasser: Lämmerhardt, Nico (VerfasserIn)
Weitere Verfasser: Merzsch, Stephan, Ledig, Johannes, Bora, Achyut, Waag, Andreas, Tornow, Marc, Mischnick, Petra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anhydrides DNA, Single-Stranded Glutarates Oligonucleotides Propylamines Silanes 3-aminopropyltrimethoxysilane 13822-56-5 mehr... glutaric anhydride 63OFI15S80 Silicon Z4152N8IUI
LEADER 01000naa a22002652 4500
001 NLM228513847
003 DE-627
005 20231224080106.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1021/la401558f  |2 doi 
028 5 2 |a pubmed24n0761.xml 
035 |a (DE-627)NLM228513847 
035 |a (NLM)23786592 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lämmerhardt, Nico  |e verfasserin  |4 aut 
245 1 0 |a Toward three-dimensional microelectronic systems  |b directed self-assembly of silicon microcubes via DNA surface functionalization 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.01.2014 
500 |a Date Revised 16.11.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA functionalization and hybridization. The yield of formed aggregates was found to be about 44%, with a relative fraction of dimers of some 30%. Finally, the electrical properties of the formed dimers were characterized using probe tips inside a scanning electron microscope 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Anhydrides  |2 NLM 
650 7 |a DNA, Single-Stranded  |2 NLM 
650 7 |a Glutarates  |2 NLM 
650 7 |a Oligonucleotides  |2 NLM 
650 7 |a Propylamines  |2 NLM 
650 7 |a Silanes  |2 NLM 
650 7 |a 3-aminopropyltrimethoxysilane  |2 NLM 
650 7 |a 13822-56-5  |2 NLM 
650 7 |a glutaric anhydride  |2 NLM 
650 7 |a 63OFI15S80  |2 NLM 
650 7 |a Silicon  |2 NLM 
650 7 |a Z4152N8IUI  |2 NLM 
700 1 |a Merzsch, Stephan  |e verfasserin  |4 aut 
700 1 |a Ledig, Johannes  |e verfasserin  |4 aut 
700 1 |a Bora, Achyut  |e verfasserin  |4 aut 
700 1 |a Waag, Andreas  |e verfasserin  |4 aut 
700 1 |a Tornow, Marc  |e verfasserin  |4 aut 
700 1 |a Mischnick, Petra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 29(2013), 26 vom: 02. Juli, Seite 8410-6  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:29  |g year:2013  |g number:26  |g day:02  |g month:07  |g pages:8410-6 
856 4 0 |u http://dx.doi.org/10.1021/la401558f  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 29  |j 2013  |e 26  |b 02  |c 07  |h 8410-6