A novel cysteine-rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers

Copyright © 2013 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 70(2013) vom: 28. Sept., Seite 93-9
1. Verfasser: Astafieva, A A (VerfasserIn)
Weitere Verfasser: Rogozhin, Eugene A, Andreev, Yaroslav A, Odintsova, T I, Kozlov, S A, Grishin, Eugene V, Egorov, Tsezi A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antimicrobial peptides Plant immunity Taraxacum officinale Wigg. Antifungal Agents Peptides Plant Proteins Recombinant Proteins Cysteine K848JZ4886
Beschreibung
Zusammenfassung:Copyright © 2013 Elsevier Masson SAS. All rights reserved.
A novel peptide named ToAMP4 was isolated from Taraxacum officinale Wigg. flowers by a combination of acetic acid extraction and different types of chromatography: affinity, size-exclusion, and RP-HPLC. The amino acid sequence of ToAMP4 was determined by automated Edman degradation. The peptide is basic, consists of 41 amino acids, and incorporates three disulphide bonds. Due to the unusual cysteine spacing pattern, ToAMP4 does not belong to any known plant AMP family, but classifies together with two other antimicrobial peptides ToAMP1 and ToAMP2 previously isolated from the dandelion flowers. To study the biological activity of ToAMP4, it was successfully produced in a prokaryotic expression system as a fusion protein with thioredoxin. The recombinant peptide was shown to be identical to the native ToAMP4 by chromatographic behavior, molecular mass, and N-terminal amino acid sequence. The peptide displays broad-spectrum antifungal activity against important phytopathogens. Two ToAMP4-mediated inhibition strategies depending on the fungus were demonstrated. The results obtained add to our knowledge on the structural and functional diversity of AMPs in plants
Beschreibung:Date Completed 13.02.2014
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2013.05.022