Sparse feature fidelity for perceptual image quality assessment

The prediction of an image quality metric (IQM) should be consistent with subjective human evaluation. As the human visual system (HVS) is critical to visual perception, modeling of the HVS is regarded as the most suitable way to achieve perceptual quality predictions. Sparse coding that is equivale...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 10 vom: 15. Okt., Seite 4007-18
1. Verfasser: Chang, Hua-Wen (VerfasserIn)
Weitere Verfasser: Yang, Hua, Gan, Yong, Wang, Ming-Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM228211891
003 DE-627
005 20231224075410.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2266579  |2 doi 
028 5 2 |a pubmed24n0760.xml 
035 |a (DE-627)NLM228211891 
035 |a (NLM)23751962 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Hua-Wen  |e verfasserin  |4 aut 
245 1 0 |a Sparse feature fidelity for perceptual image quality assessment 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.04.2014 
500 |a Date Revised 04.09.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The prediction of an image quality metric (IQM) should be consistent with subjective human evaluation. As the human visual system (HVS) is critical to visual perception, modeling of the HVS is regarded as the most suitable way to achieve perceptual quality predictions. Sparse coding that is equivalent to independent component analysis (ICA) can provide a very good description of the receptive fields of simple cells in the primary visual cortex, which is the most important part of the HVS. With this inspiration, a quality metric called sparse feature fidelity (SFF) is proposed for full-reference image quality assessment (IQA) on the basis of transformation of images into sparse representations in the primary visual cortex. The proposed method is based on the sparse features that are acquired by a feature detector, which is trained on samples of natural images by an ICA algorithm. In addition, two strategies are designed to simulate the properties of the visual perception: 1) visual attention and 2) visual threshold. The computation of SFF has two stages: training and fidelity computation, in addition, the fidelity computation consists of two components: feature similarity and luminance correlation. The feature similarity measures the structure differences between the two images, whereas the luminance correlation evaluates brightness distortions. SFF also reflects the chromatic properties of the HVS, and it is very effective for color IQA. The experimental results on five image databases show that SFF has a better performance in matching subjective ratings compared with the leading IQMs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Hua  |e verfasserin  |4 aut 
700 1 |a Gan, Yong  |e verfasserin  |4 aut 
700 1 |a Wang, Ming-Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 10 vom: 15. Okt., Seite 4007-18  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:10  |g day:15  |g month:10  |g pages:4007-18 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2266579  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 10  |b 15  |c 10  |h 4007-18